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Abstract

Let I(∞) be the set of partial isometries with finite rank of an infinite dimensional Hilbert space
H. We show that I(∞) is a smooth submanifold of the Hilbert space B2(H) of Hilbert-Schmidt
operators of H, each connected component is the set IN , which consists of all partial isometries
of rank N < ∞. Furthermore, I(∞) is a homogeneous space of U(∞)× U(∞), where U(∞) is the
classical Banach-Lie group of unitary operators of H, which are Hilbert-Schmidt perturbations of
the identity. We introduce two Riemannian metrics in I(∞). One via the ambient inner product
of B2(H), the other by means of the group action. We show that both metrics are equivalent and
complete.
Keywords: partial isometry, projection.

1 Introduction

There are several papers dealing with the geometry and the topology of the set I of partial isometries
of a Hilbert space (see, for example [6], [10], [2], [1]). However, these papers usually endow I with
the operator norm topology. The advantage of this approach is that it allows the study of the set
I as a whole. A disadvantage is that the geometry provided by the operator norm is highly non
Riemannian. In the present approach we deal with a smaller subset I(∞) of I which admits the
structure of a Hilbertian Manifold. More precisely, this paper aims to understand the geometric
structure of the set I(∞) of partial isometries with finite rank acting on an infinite dimensional
Hilbert space H. Note that I(∞) is a subset of the space B2(H) of Hilbert-Schmidt operators, itself
a Hilbert space with the trace inner product. It turns out that I(∞) is a C∞ submanifold of B2(H).
This is proven by noting that two partial isometries which lie at distance less that 1 in B2(H) have
the same rank. Let us denote by IN the set of partial isometries of rank N < ∞. Thus the local
structure of I(∞) is that of the sets IN , 1 ≤ N < ∞. These sets IN are the connected components
of I(∞). Each set IN carries a smooth transitive left action of the group U(∞) × U(∞), where
U(∞) is the classical Banach-Lie group [4] of Hilbert-Schmidt perturbations of the identity. This
action has local cross sections, a fact which implies the submanifold structure for IN and I(∞).

Two Riemannian metrics can be defined in I(∞). First, the one induced by the ambient inner
product of B2(H), called here ambient metric. Second, the one pushed forward by the inner product
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metric of U(∞)×U(∞) on the quotient structure of each component IN , called homogeneous metric
. We show that both metrics differ but are equivalent, with bounds that do not depend on the
rank N . We also show that these metrics are complete in the stronger sense of the term [9]. Notice
that each IN is an infinite dimensional manifold, and therefore there are several, in general non
equivalent, notions of completeness [9]. The manifold IN is a complete metric space in the metric
given by the (minima of) lengths of smooth curves.

The curves γ(t) = etXV e−tY , V ∈ IN , and X, Y in the Lie algebra of U(∞), need not be
geodesics of the homogeneous metric. This is because the homogeneous space IN is not a symmetric.
These curves are geodesics of the ambient metric only if X, Y satisfy a quadratic relation, which
turns out to be equivalent to a system of two linear Rosenblum-type operator equations. We show
in an appendix that this system in general does not have a solution, i.e., the curves γ need not be
geodesics of the ambient connection neither.

There are two interesting submanifolds of IN : the set PN of projections with rank N , and, for a
fixed P ∈ PN , the unitary group U(P (H)) of the N -dimensional space P (H) (isomorphic to U(N),
the group of unitary N × N matrices). The ambient metric for these submanifolds induces their
usual Riemannian metrics. We show, via the quadratic relation cited above, that the geodesics of
these manifolds are geodesics of IN . This fact plays a key role in the proof of the completeness of
IN .

2 Differentiable Structure of IN

Fix a positive integer N < ∞, and let IN be the set of partial isometries of the Hilbert space H,
with rank N . Denote by PN the set of selfadjoint projections of rank N . Then PN ⊂ IN . Let
B2(H) be the (Hilbert) space of Hilbert-Schmidt operators, i.e.

B2(H) = {A ∈ B(H) : Tr(A∗A) < ∞},

where Tr is the usual trace of B(H). Clearly IN ⊂ B2(H). In this section we shall prove that IN

is a submanifold of B2(H). Moreover, it will be shown that it is a homogeneous space. Denote by
U(∞) the group of unitaries which are Hilbert-Schmidt perturbations of the identity,

U(∞) = {U = I + U ′ : U ′ ∈ B2(H) and U is unitary }.

Consider the following action of the group U(∞)× U(∞) on IN :

(U,W ) · V = UV W ∗. (2.1)

This action is transitive and admits local cross sections. This was proven in [1] for the action of
the whole unitary group.

Lemma 2.1 The left action 2.1 is transitive.

Proof. It suffices to show that any element V ∈ IN is of the form UPW ∗ for some projection
P ∈ PN and U,W ∈ U(∞). In fact, U,W can be chosen as finite rank perturbations of the identity.
The proof of this fact is left to the reader. 2

The group U(∞) is one of the so called classical Banach-Lie groups [4]. The Lie algebra is the
space B2(H)ah of antihermitian operators in B2(H). With the natural metric given by the real part
of the trace inner product, U(∞) is a complete Riemannian manifold, whose geodesic curves have
the form

µ(t) = UetX ,
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where U ∈ U(∞) and X ∈ B2(H)ah.
Let us prove that the action of U(∞) × U(∞) on IN admits continuous local cross sections.

Recall some basic facts on the geometry of the space PN of selfadjoint projections of rank N . These
facts are certainly well known (see, for example, [5], [3]), but we could not find a reference where
the finite rank components of the space P are considered with the Hilbert-Schmidt metric.

Remark 2.2 1. The space PN is a C∞ submanifold of B2(H). The group U(H) acts smoothly
and transitively on PN by means of

U · P = UPU∗, U ∈ U(H), P ∈ PN .

This action makes PN a C∞ homogeneous space of U(H). The tangent space (TPN )P equals
{XP − PX : X∗ = −X}.

2. If P,Q ∈ PN satisfy ‖P −Q‖ < 1, then there exists Z ∈ (TPN )P , which is a smooth function
of Q, such that

eiZPe−iZ = Q.

Note that (TPN )P = {XP − PX : X∗ = −X} lies inside B2(H): in fact, it consists of
operators with finite rank at most 2N . Then the usual norm of B(H) and the Hilbert-Schmidt norm
are equivalent there,

‖A‖ ≤ ‖A‖2 ≤
√

2N‖A‖.
In particular, this implies that the mapping Q 7→ Z is defined in the open ball of radius 1 around
P in B2(H), and is continuous in the Hilbert-Schmidt topology. Finally note that

eiZ = I + iZ − 1
2
Z2 − i

6
Z3 + . . . ∈ U(∞).

Proposition 2.3 The action (2.1) has continuous local cross sections, with uniform radius. That
is, there exists R, R ≥ 1

2 , such that for any V0 ∈ IN , there is a continuous map

σV0 : {V ∈ IN : ‖V − V0‖2 < R} → U(∞)× U(∞)

such that
σV0(V ) · V0 = V.

Proof. Let us describe the procedure given in [2] for the construction of local cross sections for
partial isometries in B(H), and check that it fits into our context. In [2] it is shown that if
‖V − V0‖ < 1/2 then there exist unitaries U,W in B(H) such that UV0W

∗ = V . These unitaries
are constructed as follows. Observe first that ‖V − V0‖ < 1/2 implies that ‖V ∗V − V ∗

0 V0‖ < 1 and
‖V V ∗ − V0V

∗
0 ‖ < 1. Then, by the above remark, there exist selfadjoint operators Z, Z ′ of finite

rank, which depend continuously on V , such that

eiZV ∗
0 V0e

−iZ = V ∗V and eiZ′V0V
∗
0 e−iZ′ = V V ∗.

Let W̃ = V (eiZ′V0e
−iZ)∗+(I−V V ∗). Then W̃ is a unitary operator and a finite rank perturbation

of I. Moreover, one has
W̃eiZ′V0e

−iZ = V.

Then, σV0(V ) = (W̃eiZ′ , eiZ) ∈ U(∞)×U(∞) is a local cross section for the action (2.1). The map
σV0 is defined on the set {V ∈ IN : ‖V − V0‖ < 1/2}. Since ‖V − V0‖ ≤ ‖V − V0‖2, then it follows
that σV0 is also defined on a ball of radius 1

2 in the Hilbert-Schmidt metric. Finally, using that the
action of U(∞)× U(∞) is transitive and clearly isometric for the Hilbert-Schmidt norm, the map
σ can be translated to any V1 ∈ IN , and defined on a (translated) ball with the same radius. 2
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For V0 ∈ IN , denote by πV0 the surjective map

πV0 : U(∞)× U(∞) → IN , πV0(U,W ) = UV0W
∗.

The proposition above states that πV0 has continuous local cross sections. Clearly this map is C∞

as a map from U(∞)× U(∞) to B2(H). The differential at I can be explicitely computed:

δV0 := d(πV0)I : B2(H)ah × B2(H)ah → B2(H), δV0(X, Y ) = XV0 − V0Y.

The isotropy group GV0 at V0 is

GV0 = {(G,H) ∈ U(∞)× U(∞) : GV0 = V0H}.
Proposition 2.4 The space IN is a C∞ submanifold of B2(H), and the map πV0 is a C∞ sub-
mersion. In particular, IN is a C∞ homogeneous space of U(∞)× U(∞).

Proof. We shall use a fine result in [12], which states sufficient conditions on a left action from a
Banach-Lie group on a Banach space, in order that the orbits of the action become submanifolds
of the ambient Banach space, and smooth homogeneous spaces of the Banach-Lie group. In our
context, Raeburn’s conditions amount to the following:

1. πV0 : U(∞)× U(∞) → IN is an open map,
2. δV0 : B2(H)ah × B2(H)ah → B2(H) has closed and complemented range,

and
3. δV0 has closed and complemented kernel.

If that is the case, then IN ⊂ B2(H) is a C∞ submanifold, and the map πV0 is a submersion.
The first condition is fulfilled: in fact, πV0 is open because it has continuous local cross sections

by the proposition above.
Note that ker δV0 is a real subspace of the real Hilbert space B2(H)ah×B2(H)ah, and that R(δV0)

is a real subspace of the real Hilbert space structure of B2(H). In both cases, the inner product
is given by the real part of the trace Tr. Therefore, to prove the second and third conditions, it
suffices to show that the range and the kernel of δV0 are closed. The kernel of δV0 is closed, because
δV0 is continuous. Let us examine the range of δV0 . Consider the real linear map KV0 ,

KV0 : B2(H) → B2(H)× B2(H), KV0(A) = (κ1, κ2),

κ1 =
1
4
V0V

∗
0 AV ∗

0 −
1
4
V0A

∗V0V
∗
0 + (I − V0V

∗
0 )AV ∗

0 − V0A
∗(I − V0V

∗
0 ),

κ2 = −1
4
V ∗

0 AV ∗
0 V0 +

1
4
V ∗

0 V0A
∗V0 − V ∗

0 A(I − V ∗
0 V0) + (I − V ∗

0 V0)A∗V0 (2.2)

Straightforward computations show that

δV0 ◦ KV0 ◦ δV0 = δV0 .

This implies that δV0 ◦ KV0 is an idempotent operator on B2(H), whose range equals the range of
δV0 , which is therefore closed. 2

We shall return to this linear operator KV0 in the next section.
Let us denote by I(∞) the set of all partial isometries of finite rank:

I(∞) = ∪N≥1IN .

The set I(∞) is a discrete union of connected submanifolds of B2(H). Moreover, it is known (see
[10]), that two partial isometries V0, V1 such that ‖V0 − V1‖ < 1 are conjugate by the action of
U(H)× U(H). Therefore, if ‖V0 − V1‖2 < 1, then V0 and V1 belong to the same the component of
I(∞). In other words, d(IN , IM ) ≥ 1 if N 6= M .
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Corollary 2.5 The set I(∞) of partial isometries of finite rank is a C∞ submanifold of B2(H),
and a discrete union of homogeneous spaces of U(∞)× U(∞).

3 The ambient Riemannian metric of I(∞)

By the argument closing the preceding section, the local structure of I(∞) is that of IN . So we shall
focus this study in each component. Fix N ≥ 1 and V0 ∈ IN . Since the map πV0 is a submersion,
the tangent space of IN (or I(∞) for that matter) is

(TIN )V0 = R(δV0) = {XV0 − V0Y : X,Y ∈ B2(H)ah}.

Recall the map KV0 (2.2). Note that KV0 takes values in B2(H)ah × B2(H)ah. It was noted that
PV0 = δV0 ◦KV0 is an idempotent real linear operator on B2(H) which is the identity when restricted
to the tangent space (TIN )V0 . Explicitly

PV0(A) =
1
2
V0V

∗
0 AV ∗

0 V0 − 1
2
V0A

∗V0 + (I − V0V
∗
0 )AV ∗

0 V0 + V0V
∗
0 A(I − V ∗

0 V0). (3.3)

Clearly PV0 is the identity when restricted to (TIN )V0 , and because the extension of KV0 takes
antihermitian values, it follows that the range of PV0 is contained in (TIN )V0 . In other words, PV0 is
a real linear idempotent operator of B2(H) with range equal to the tangent space (TIN )V0 . (TIN )V0

is a real subspace of the real Hilbert space B2(H) with inner product < A,B >IR= ReTr(B∗A).

Lemma 3.1 The linear map PV0 of ?? is the orthogonal projection onto (TIN )V0 for the inner
product < , >IR.

Proof. The proof is straightforward, it consists in showing that PV0 is symmetric for the inner
product < , >IR. 2

Let us define the Riemannian metric of IN induced by the ambient metric < , >IR. For V0 ∈ IN

and X,Y ∈ (TIN )V0 , define

ga
V0

(X, Y ) =< X, Y >IR= ReTr(Y ∗X). (3.4)

The Riemannian connection induced by this metric is therefore defined as follows: given tangent
vector fields X ,Y of IN , then

∇a
XYV = PV

(X (Y)V

)
, V ∈ IN . (3.5)

In particular, a curve γ ∈ IN is a geodesic for this metric if

0 = Pγ(γ̈) =
1
2
γγ∗γ̈γ∗γ − 1

2
γγ̈∗γ + (I − γγ∗)γ̈γ∗γ + γγ∗γ̈(I − γ∗γ). (3.6)

Lemma 3.2 Fix a projection P ∈ IN , let X,Y ∈ B2(H)ah. The curve γ(t) = etXPe−tY , t ∈ IR,
is a geodesic of the connection 3.5 if and only if

X2P − 2XPY + PY 2 (3.7)

commutes with P .
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Proof. Clearly γ̇ = etX(XP − PY )e−tY and γ̈ = etX(X2P − 2XPY + PY 2)e−tY . Also γ∗γ =
etY Pe−tY and γγ∗ = etXPe−tX . Using these expressions one obtains that the equation (3.6) is
equivalent to

(I − P )(X2P − 2XPY + PY 2)P + P (X2P − 2XPY + PY 2)(I − P ) = 0.

Apparently, this in turn is equivalent to the condition that X2P − 2XPY + PY 2 commutes with
P . 2

The homogeneous Riemannian manifold PN (of projections of rank N) is a submanifold of IN .
Another interesting submanifold of IN is the set of partial isometries with initial and final spaces
equal to the range of P , or equivalently, unitary operators of P (H). Let us denote it by U(P (H)).
This set clearly identifies with the group U(N) of N × N unitaries. Consider these submanifolds
with the ambient metric of IN (or the real B2(H)) and the Riemannian connections induced by
these metrics.

Corollary 3.3 The geodesics of PN are geodesics of IN . The geodesics of U(P (H)) are geodesics
of IN .

Proof. Geodesics of PN are of the form [3]

etXPe−tX ,

with X ∈ B2(H)ah such that X = PX(I − P ) + (I − P )XP . In other words, when written as a
2× 2 matrix in terms of the projection P , X is codiagonal. Then, by the lemma above in the case
X = Y , one needs to show that (here X = Y ) X2P − 2XPX + PX2 commutes with P . Since
X2 is a diagonal matrix in terms of P , it commutes with P . The element XPX is a product of
two codiagonal matrices with a diagonal one, therefore it also commutes with P . Geodesics of (the
natural Riemannian connection) of the unitary group U(P (H)) of P (H) have the form

PetXP = etXP = PetX

with X an antihermitian operator in P (H). It fits in the description of the lemma above, putting
Y = 0, because X commutes with P . 2

Remark 3.4 The lemma does not give a complete characterization of the geodesics of IN . The
curves γ = etXPe−tY can be translated using the action of U(∞)×U(∞), in order to obtain curves
that start at any chosen point of IN (note that the action is isometric). However, not every possible
tangent vector A of (TIN )P is of the form γ̇(0) = XP − PY , with X, Y satisfying the condition
3.7 of the lemma. Therefore the curves γ above do not characterize all possible geodesics of IN .
We work out this fact in the second appendix.

4 Completeness of IN in the ambient Riemannian metric.

Let ı be the map
ı : IN → PN , ı(V ) = V ∗V.

Clearly ı is smooth. The differential of ı at V ∈ IN is

dıV : (TIN )V → (TPN )V ∗V , dıV (A) = A∗V + V ∗A.

Lemma 4.1 Let V ∈ IN and A ∈ (TIN )V . Then

‖dıV (A)‖2 ≤
√

2‖A‖2.
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Proof.
‖dıV (A)‖22 = Tr(V ∗AA∗V + V ∗AV ∗A + A∗V A∗V + A∗V V ∗A (4.8)

If γ is a curve in IN , then γγ∗γ = γ. Differentiating we get γ̇γ∗γ + γγ̇∗γ + γγ∗γ̇ = γ̇. If γ is a
curve with γ(0) = V and γ̇(0) = A, we get AV ∗V + V A∗V + V V ∗A = A. Using this relation in
(4.8) above, one obtains

‖dıV (A)‖22 = 2Tr(A∗A− V ∗V A∗A) = 2Tr(A(I − V ∗V )A∗) ≤ 2Tr(AA∗),

because I − V ∗V ≤ I. 2

Then, if γ is a curve in IN , the length of the curve γ∗γ (measured in PN ) is bounded by
√

2 times
the length of γ (measured in IN ). If (M, g) is a Riemannian manifold and A,B ∈M, let us denote
by dM(A,B) the geodesic distance, defined as the infimum of the lengths of the curves in M joining
A and B. The above remark clearly implies that if V0, V1 ∈ IN , then

dIN
(V0, V1) ≤

√
2 dPN

(ı(V0), ı(V1)). (4.9)

Analogously, we can define the map

ϕ : IN → PN , ϕ(V ) = V V ∗.

Clearly this map has the same properties as ı:

dIN
(V0, V1) ≤

√
2 dPN

(ϕ(V0), ϕ(V1)). (4.10)

Theorem 4.2 IN is a complete metric space in the geodesic distance dIN
.

Proof. Let {Vn} be a Cauchy sequence in IN for the metric dIN . By the above remarks, it follows
that {ı(Vn)} and {ϕ(Vn)} are Cauchy sequences of PN for the metric dPN

. It is known that PN is
complete for the geodesic distance. Then there exist P, Q ∈ PN such that

ı(Vn) = V ∗
n Vn → P, ϕ(Vn) = VnV ∗

n → Q.

The action of U(∞) on PN admits continuous local cross sections, which are defined on balls of
radius 1 around each point of PN (2.2). It follows that there exist unitaries Un,Wn ∈ U(∞) such
that VnV ∗

n = UnPU∗
n and V ∗

n Vn = WnQW ∗
n , with Un → I and Wn → I.

Since P, Q are conjugate by the action of U(∞), there exists U0 ∈ U(∞) such that Q = U0PU∗
0 .

Let Ṽn = U∗
0 U∗

nVnWn. Then straightforward computations show that ṼnṼn
∗

= P and Ṽn
∗
Ṽn = P .

That is, Ṽn is a unitary operator of P (H).
We claim that Ṽn is a Cauchy sequence in IN . To prove this, it suffices to show that if Vn

is a Cauchy sequence in IN and Gn is a convergent (to G) sequence of U(∞), then both GnVn

and VnGn are Cauchy sequences in IN . Let us prove the first of these assertions, the second is
analogous. Observe first that

dIN
(VnGn, VmGm) ≤ dIN

(VnGn, VnG) + dIN
(VnG, VmG) + dIN

(VmG,VmGm).

The terms in the middle dIN
(VnG,VmG) = dIN

(Vn, Vm) tend to zero. The first and third term
are dealt analogously, let us proceed with the first. Since the action of U(∞) × U(∞) on IN is
isometric, we can multiply on the right by G∗, or equivalently, suppose that G = I. We may also
suppose n big enough so that Gn lies in a normal neighbourhood of I in U(∞). That is, there exists
Xn ∈ B2(H)ah such that Gn = eXn and µn(t) = etXn is a minimizing geodesic of U(∞) joining I
and Gn. Then γn = Vnµn is a curve joining Vn and VnGn in IN and

dIN
(VnGn, Vn) ≤ length(γn) =

∫ 1

0

gγn(γ̇n)1/2 dt = ‖VnXn‖2.
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Note that ‖VnXn‖2 = Tr(X∗
nV ∗

n VnXn)1/2, which together with V ∗
n Vn ≤ I, imply that

‖VnXn‖2 ≤ Tr(X∗
nXn)1/2 = ‖Xn‖2 = dU(∞)(Gn, I) → 0.

In fact, we proved that dIN
(VnGn, VnG) ≤ dU(∞)(Gn, G). Therefore our claim is verified, and Ṽn is

a Cauchy sequence in IN , which lies in the submanifold U(P (H)). Since the geodesics of U(P (H))
are geodesics of the ambient IN , it follows that Ṽn is a Cauchy sequence in U(P (H)). This manifold
is isometrically diffeomorphic to U(N), which is complete. Therefore Ṽn is convergent in U(P (H)),
and there exists Ṽ ∈ U(P (H)) such that Ṽn → Ṽ ∈ U(P (H)). Then

Vn = U0UnṼnW ∗
n → U0Ṽ ∈ IN .

2

5 A metric induced by the action

The manifold IN is a homogeneous space, namely, for any fixed V0 ∈ IN ,

IN ' U(∞)× U(∞)/GV0 ,

where GV0 is the subgroup of U(∞)× U(∞) given by

GV0 = {(H, K) ∈ U(∞)× U(∞) : HV0 = V0K}.

We introduce a new metric in IN via the natural metric in the Lie algebra B2(H)ah × B2(H)ah of
U(∞) × U(∞), as follows. Let GV0 be the Lie algebra of GV0 . Note that GV0 = ker δV0 . It follows
that

δV0 |ker δ⊥
V0

: ker δ⊥V0
→ (TIN )V0

is an isomorphism. Here ker δ⊥V0
is the orthogonal complement with respect to the inner product of

B2(H)ah×B2(H)ah given by the real part of the trace: < (A,B), (A′, B′) >= Re Tr(A′∗A+B′∗B).
We induce a metric in (TIN )V0 by requiring that δV0 |ker δ⊥

V0
be an isometric isomorphism, for all

V0 ∈ IN . Let us describe this metric explicitely.
We denote

OV0 = ker δ⊥V0
. (5.11)

Recall the map KV0 of 2.2. It is a relative inverse for δV0 . We claim that it is the relative inverse
with range equal to OV0 . We do this by showing that both distributions V 7→ δV and V 7→ KV are
equivariant with respect to the action of U(∞)× U(∞).

Lemma 5.1 Let V ∈ IN and U,W ∈ U(∞). Then

δUV W∗(X, Y ) = (U,W ) · (δV (Ad(U∗,W ∗)(X, Y ))
)
, X, Y ∈ B2(H)ah,

and
KUV W∗(A) = Ad(U,W )

(
δV ((U,W ) ·A)

)
, A ∈ (TIN )V .

Proof. The proof is a straightforward computation. 2

Proposition 5.2 The map KV of 2.2 is the relative inverse of δV with range equal to OV .
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Proof. By the above lemma, and the fact that the actions involved are isometric, it suffices to
prove the proposition for the case V = P . Note that the isotropy group GP consists of pairs of
unitaries (H, K) ∈ U(∞)× U(∞) such that HP = PK. This implies that PH∗ = K∗P , and then
KP = PH. Then PHP = HP = PH and analogously for K. Then GP can be characterized as
follows

GP = {(H, K) ∈ U(∞)× U(∞) : H, K commute with P and PHP = PKP}. (5.12)

Therefore the elements of GP = ker δP are pairs of 2 × 2 diagonal matrices (in terms of P ) which
have the same 1, 1 entry. Apparently, the orthogonal complement of this space is the set of pairs
of matrices of the form (( A B

−B∗ 0

)
,

( −A C
−C∗ 0

))
,

where A is an antihermitian operator in P (H). In the case at hand (V = P ), the map Kp :
(TIN )P → B2(H)× B2(H) is given by

KP (A) =
(1
2
PAP + (I − P )AP − PA∗(I − P ),−1

2
PAP − PA(I − P ) + (I − P )A∗P

)
.

It is clear that the range of this map equals OP . 2

Let us define a second Riemannian metric in IN , the one induced by the isomorphisms KV , V ∈ IN .
If A,B ∈ (TIN )V , then

gh
V (A, B) =< KV (A),KV (B) >B2(H)ah×B2(H)ah

= Re Tr
(−1

2
V ∗AV ∗B + 2B∗(I − V V ∗)A + 2A(I − V ∗V )B∗) (5.13)

= Re Tr
(−1

2
V ∗AV ∗B + 4AB∗ − 2B∗V V ∗A− 2AV ∗V B

)
.

By 5.1 it is clear that U(∞)× U(∞) also acts isometrically for this metric gh.
Let us show that IN is complete with the homogeneous metric as well. In order to do this, we

shall see that both metrics ga and gh are equivalent.

Proposition 5.3 Let V ∈ IN and X ∈ (TIN )V . Then

1
2
ga

V (X,X) ≤ gh
V (X,X) ≤ 2ga

V (X, X).

Proof. Let V be the (complex) subspace of B2(H) given by

V = {X ∈ B2(H) : (I − P )X(I − P ) = 0},
and

Π : V→ V, Π(X) =
1
2
PXP + 2X(I − P ) + 2(I − P )X.

Clearly Π(V) ⊂ V. Note that Π is an isomorphism with inverse

Π−1(X) = 2PXP +
1
2
X(I − P ) +

1
2
(I − P )X.

Also it is apparent that ‖Π‖ ≤ 2 and ‖Π−1‖ ≤ 2. Consider first the case V = P . Let X ∈ (TIN )P .
Then X is antihermitian. Compute

gh
P (X, X) = ReTr

(−1
2
PXPX + 2X∗(I − P )X + 2X(I − P )X∗)
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= ReTr
(1
2
PXPX∗+2(I −P )XX∗+2X(I −P )X∗) = Tr

(
[
1
2
PXP +2(I −P )X +2X(I −P )]X∗).

Since (I − P )X(I − P ) = 0, then (I − P )X = (I − P )XP and X(I − P ) = PX(I − P ). Therefore

gh
P (X, X) =< Π(X), X >V .

On the other hand, < X, X >V= ga
P (X,X). The bounds ‖Π‖ ≤ 2 and ‖Π−1‖ ≤ 2 imply

1
2

< X, X >V≤< Π(X), X >V≤ 2 < X, X >V,

or equivalently,
1
2
ga

P (X, X) ≤ gh
P (X, X) ≤ 2ga

P (X,X).

At other points V ∈ IN , the inequality is proven by means of the transitive action of U(∞)×U(∞),
which is isometric for both metrics.

2

Corollary 5.4 The manifold IN is complete in the Riemannian metric gh.

6 Appendix: IN is simply connected

We may extend the action of U(∞)×U(∞) to the whole unitary groups U(H)×U(H). By Kuiper’s
theorem [8], this group is contractible. In particular, the transitivity of the action implies that the
map

πP : U(H)× U(H) → IN , πP (U,W ) = UPW ∗

is surjective. Therefore IN is connected. It was also shown that this map has continuous local
cross sections. This implies that it is a locally trivial fibre bundle. The fibre of this bundle is the
subgroup ḠP , consisting of all pairs of unitaries (G, H) such that GP = PH. This group can be
characterized analogously as in 5.12, and consists of pairs of unitaries (G,H) which commute with
P and verify PGP = PHP . In matrix form (in terms of P ):

G =
(

U0 0
0 G∞

)
, H =

(
U0 0
0 H∞

)
,

where U0 is a unitary operator in P (H) (of dimension N) and G∞,H∞ are unitary operators in
P (H)⊥. Both U(N) and U(P (H)⊥) are connected, and therefore ḠP is connected. In fact,

ḠP ' U(N)× U(P (H)⊥)× U(P (H)⊥).

Examining the homotopy exact sequence of the bundle πP , using that P (H)⊥ is infinite dimensional,
it follows that

πn+1(IN ) ' πn(ḠP ) ' πn(U(N)).

In particular, for n = 0, π1(IN ) = 0.

7 Appendix II: an example

In this section we show an example. In order to construct this example we need a lemma which
translates the condition 3.7 (for a curve etXPe−tY to be a geodesic of ga) into a linear system of
operator equations. The example will show that there are directions (i.e. vectors in (TIN )P ) which
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are not velocity vectors of geodesics of the type etXPe−tY . In other words, there are geodesics
starting at P which are not of this type. Any V ∈ (TIN )P is of the form V = δP (A,B), with
A,B ∈ B2(H)ah,

A =
(

α β
−β∗ 0

)
, B =

( −α γ
−γ∗ 0

)
.

Lemma 7.1 Let V = AP −PB with A,B as above. Then there exist XV , YV ∈ B2(H)ah such that
XV P − PYV = V and X2

V P − 2XV PYV + PY 2
V commutes with P if and only if the system

{
γZ −Xγ = 3αγ
βY −Xβ = −3αβ

(7.14)

has a solution, where the operators X : P (H) → P (H) and Y,Z : P (H)⊥ → P (H)⊥ are antihermi-
tian. If X,Y, Z provide a solution, then putting

XV =
(

α + X β
−β∗ Y

)
, YV =

( −α−X γ
−γ∗ Z

)

gives the geodesic pair which satisfies the quadratic relation 3.7, with δP (XV , YV ) = V .

Proof. Note that the pairs (
X 0
0 Y

)
,

( −X 0
0 Z

)

with X,Y, Z as above, parametrize ker δP . It follows that

A′ =
(

α + X β
−β∗ Y

)
, B′ =

( −α−X γ
−γ∗ Z

)

parametrize all pairs (A′, B′) such that δ(A′, B′) = V . One arrives at the system 7.14 by routine
matrix calculations, using that the solutions X, Y, Z must be antihermitian. 2

Notice in the first equation of 7.14 that the solution Z must leave both ker γ and (ker γ)⊥

invariant. Indeed, if ξ ∈ ker γ, then

0 = 3αγξ = γZξ −Xγξ = γZξ.

Since Z is a priori antihermitian, it leaves invariant also the orthogonal complement. Analogously,
from the second equation, it follows that any solution Y leaves invariant kerβ and (kerβ)⊥.

Both γ, β have closed (finite dimensional) ranks. Therefore, they both have bounded Moore-
Penrose pseudo-inverses γ†, β†,

γ†γ = P(ker γ)⊥ , γγ† = PR(γ), β†β = P(ker β)⊥ , ββ† = PR(β).

Multiplying the first equation of 7.14 by γ† on the left we obtain

P(ker γ)⊥Z = γ†(X + 3α)γ.

Since Z is antihermitian and leaves (ker γ)⊥ invariant, it follows that Z and P(ker γ)⊥ commute.
Then γ†(X + 3α)γ is antihermitian. Reasoning analogously with the second equation of 7.14, one
obtains that β†(X − 3α)β is antihermitian.

These two facts provide the clue to find an example of a direction V which is not the velocity
vector of any geodesic of the form etXPe−tY .
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Example 7.2 Put N = 2, H = `2(N) and let {εn : n ≥ 1} be the canonical basis of `2(N). Put P
the projection onto the subspace spanned by the first two vectors of the basis. Let

γ : P (H)⊥ → P (H), γ(0, 0, x3, x4, x5, x6, . . .) = (x3, 2x4, 0, . . .).

Clearly γ† is given by γ†(x1, x2, 0, . . .) = (0, 0, x1,
1
2x2, 0, . . .).

By the remarks above, if X is part of a solution of the system 7.14, then both X + 3α and
γ†(X +3α)γ are antihermitian. A straightforward calculation shows that for this γ just defined, an
operator C (in fact, a 2 × 2 matrix) is antihermitian with γ†Cγ also antihermitian, only if C is
diagonal. It follows that X + 3α must be diagonal. Putting β = γ and reasoning analogously with
the second equation, one obtains that also X − 3α is diagonal. This implies that the data α must
be diagonal, a fact which need not happen.
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